

Acceleration Technology to Realize Super Resolution Processing of Scanned Image for MFP

Masahiro MURAKAMI Yuji OKAMOTO

KONICA MINOLTA, Inc. July 8th, 2019

Evolution of next-generation MFP by AI

Evolution of next-generation MFP by AI

MFP AI system(Current generation)

In current, AI process is implemented in cloud.

However, there are some concerns.

- 1. privacy concerns
- 2. Realtime/responsiveness concerns
- 3. Uploading cost

MFP AI system(Current generation)

At this time, our first prototype is FPGA at point of power and cost view.

Use case of AI feature for MFP

- Cost Down
 - Using cheap scanner, but enable to get high quality image.
- Function quality Up
 - Printing quality up for generation copy.
 - Saving external storage(small file size output).

Target Neural Network is SRCNN.

- SRCNN was published in 2014 ECCV.
- we can get a better quality of a larger image from a small image originally.

Trial Evaluation Environment

$\blacksquare MFP PF(SoC) + FPGA(PCle Gen3 x1)$

Core

We made prototyping for FPGA AI acceleration. Also build-up GPU environment for comparing.

In our system, we can get FPGA AI accelerator from DL network model file.

Our Target System Structure

Our Target System Structure

Our Target System Structure

Inference Result

Output Image Quality

PSNR[dB]

Image data

Output Image Quality

• We evaluated image quality by PSNR and SSIM.

		Input image Bicubic	23.4273
		Inference by CPU (FP32)	24.2970
	Output image	Inference by FPGA(INT16)	24.2946
	(CPU_FP32) No quantization		
Input image (Bicubic)		Image data	SSIM
		Input image Bicubic	0.784
		Inference by CPU (FP32)	0.810
	Outrout images	Informa by	0.910

- The quantized INT16 parameter is very little influence for output image data.

- Our Proprietary HLS compiler works well.

- Performance is insufficient with only CPU. Al accelerator is required for super resolution of scanner input size.
- FPGA accelerates super resolution process, but A4 size super resolution process takes more than a minute, and it is not realistic to use as it is.
 - We are required continuous effort for performance improvement for AI accelerator.
 - Neural Network optimization. (changing block size larger)
 - Approach of using quantization to 8bit.
 - Cropping only low quality region in A4 scan image and only input a part of images.

- We got FPGA AI accelerator from DL network model file by proprietary HLS compiler.
- In our system, reconfiguration controller can switch neural network design in FPGA.
- Quantization from FP32 to INT16 does not affect to image quality.
- Performance is insufficient with only CPU. Al accelerator is required for super resolution of scanner input size.
- We are considering multiple AI accelerator option, GPU, FPGA and ASSP/IP.
- FPGA and GPU accelerates super resolution process but, it was slower than we expected. We are required continuous effort for performance improvement for FPGA AI accelerator.

Thank you!

KONICA MINOLTA's New MFP i-SERIES

